Sabtu, 13 Maret 2010

FLUIDA FLUIDA FLUIDA,,,

1.Statika fluida

Statika fluida, kadang disebut juga hidrostatika, adalah cabang ilmu yang mempelajari fluida dalam keadaan diam, dan merupakan sub-bidang kajian mekanika fluida. Istilah ini biasanya merujuk pada penerapan matematika pada subyek tersebut. Statika fluida mencakup kajian kondisi fluida dalam keadaan kesetimbangan yang stabil. Penggunaan fluida untuk melakukan kerja disebut hidrolika, dan ilmu mengenai fluida dalam keadaan bergerak disebut sebagai dinamika fluida.

Tekanan statik di dalam fluida

Karena sifatnya yang tidak dapat dengan mudah dimampatkan, fluida dapat menghasilkan tekanan normal pada semua permukaan yang berkontak dengannya. Pada keadaan diam (statik), tekanan tersebut bersifat isotropik, yaitu bekerja dengan besar yang sama ke segala arah. Karakteristik ini membuat fluida dapat mentransmisikan gaya sepanjang sebuah pipa atau tabung, yaitu, jika sebuah gaya diberlakukan pada fluida dalam sebuah pipa, maka gaya tersebut akan ditransmisikan hingga ujung pipa. Jika terdapat gaya lawan di ujung pipa yang besarnya tidak sama dengan gaya yang ditransmisikan, maka fluida akan bergerak dalam arah yang sesuai dengan arah gaya resultan.

Konsepnya pertama kali diformulasikan, dalam bentuk yang agak luas, oleh matematikawan dan filsuf Perancis, Blaise Pascal pada 1647 yang kemudian dikenal sebagai Hukum Pascal. Hukum ini mempunyai banyak aplikasi penting dalam hidrolika. Galileo Galilei, juga adalah bapak besar dalam hidrostatika.

Tekanan hidrostatik

Sevolume kecil fluida pada kedalaman tertentu dalam sebuah bejana akan memberikan tekanan ke atas untuk mengimbangi berat fluida yang ada di atasnya. Untuk suatu volume yang sangat kecil, tegangan adalah sama di segala arah, dan berat fluida yang ada di atas volume sangat kecil tersebut ekuivalen dengan tekanan yang dirumuskan sebagai berikut

\ P = \rho g h

dengan (dalam satuan SI),

P adalah tekanan hidrostatik (dalam pascal);

ρ adalah kerapatan fluida (dalam kilogram per meter kubik);

g adalah percepatan gravitasi (dalam meter per detik kuadrat);

h adalah tinggi kolom fluida (dalam meter).

Apungan

Sebuah benda padat yang terbenam dalam fluida akan mengalami gaya apung yang besarnya sama dengan berat fluida yang dipindahkan. Hal ini disebabkan oleh tekanan hidrostatik fluida.

Sebagai contoh, sebuah kapal kontainer dapat mengapung sebab gaya beratnya diimbangi oleh gaya apung dari air yang dipindahkan. Makin banyak kargo yang dimuat, posisi kapal makin rendah di dalam air, sehingga makin banyak air yang "dipindahkan", dan semakin besar pula gaya apung yang bekerja.

Prinsip apungan ini ditemukan oleh Archimedes.


2.Dinamika fluida

Dinamika fluida

adalah subdisiplin dari mekanika fluida yang mempelajari fluida bergerak. Fluida terutama cairan dan gas. Penyelsaian dari masalah dinamika fluida biasanya melibatkan perhitungan banyak properti dari fluida, seperti kecepatan, tekanan, kepadatan, dan suhu, sebagai fungsi ruang dan waktu. Disiplini ini memiliki beberapa subdisiplin termasuk aerodinamika (penelitian gas) dan hidrodinamika (penelitian cairan). Dinamika fluida memliki aplikasi yang luas. Contohnya, ia digunakan dalam menghitung gaya dan moment pada pesawat, mass flow rate dari petroleum dalam jalur pipa, dan perkiraan pola cuaca, dan bahkan teknik lalu lintas, di mana lalu lintas diperlakukan sebagai fluid yang berkelanjutan. Dinamika fluida menawarkan struktur matematika yang membawahi disiplin praktis tersebut yang juga seringkali memerlukan hukum empirik dan semi-empirik, diturunkan dari pengukuran arus, untuk menyelesaikan masalah praktikal

titk berat benda

PUSAT MASSA DAN TITIK BERAT

Pusat massa dan titik berat suatu benda memiliki pengertian yang sama, yaitu suatu titik tempat berpusatnya massa/berat dari benda tersebut. Perbedaannya adalah letak pusat massa suatu benda tidak dipengaruhi oleh medan gravitasi, sehingga letaknya tidak selalu berhimpit dengan letak titik beratnya.

1. PUSAT MASSA

Koordinat pusat massa dari benda-benda diskrit, dengan massa masing-masing M1, M2,....... , Mi ; yang terletak pada koordinat (x1,y1), (x2,y2),........, (xi,yi) adalah:

X = (å Mi . Xi)/(Mi)

Y = (å Mi . Yi)/(Mi)

2. TITIK BERAT (X,Y)

Koordinat titik berat suatu sistem benda dengan berat masing-masing W1, W2, ........., Wi ; yang terletak pada koordinat (x1,y1), (x2,y2), ............, (xi,yi) adalah:

X = (å Wi . Xi)/(Wi)

Y = (å Wi . Yi)/(Wi)

LETAK/POSISI TITIK BERAT

  1. Terletak pada perpotongan diagonal ruang untuk benda homogen berbentuk teratur.
  2. Terletak pada perpotongan kedua garis vertikal untuk benda sembarang.
  3. Bisa terletak di dalam atau diluar bendanya tergantung pada homogenitas dan bentuknya.

TITIK BERAT BEBERAPA BENDA

Gambar
Nama
Letak Titik Berat
Keterangan
Garis lurus yo = 1/2 AB z = di tengah-tengah AB
Busur lingkaran yo = AB/AB . R AB = tali busur
AB = busur AB
R = jari-jari lingkaran
Busur setengah lingkaran yo = 2.R/p R = jari-jari lingkaran
Juring lingkaran yo = AB/AB.2/3.R AB = tali busur
AB = busur AB
R = jari-jari lingkaran
Setengah lingkaran yo = 4.R/3 p R = jari-jari lingkaran
Selimut setengah bola yo = 1/2 R R = jari-jari lingkaran
Selimut limas yo = 1/3 t t = tinggi limas
Selimut kerucut yo = 1/3 t t = tinggi kerucut
Setengah bola yo = 3/8 R R = jari-jari bola
Limas yo = 1/4 t t = tinggi limas
Kerucut yo = 1/4 t t = tinggi kerucut

Dalam menyelesaikan persoalan titik berat benda, terlebih dahulu bendanya dibagi-bagi sesuai dengan bentuk benda khusus yang sudah diketahui letak titik beratnya, kemudian baru diselesaikan dengan rumusan yang ada.

Contoh:

Dua silinder homogen disusun seporos dengan panjang dan massanya masing-masing: l1 = 5 cm ; m1 = 6 kg ; l2 = 10 cm ; m2 = 4 kg.
Tentukan letak titik berat sistem silinder tersebut !

Jawab:

Kita ambil ujung kiri sebagai acuan, maka:

x1 = 0.5 . l1 = 2.5 cm
x2 = l2 + 0.5 . l1 = 5 + 5 = 10 cm

X = (å mi . xi)/(mi)
X = (m1.x1)
+ (m1.x1)/(m1 + m2)

X = (6 . 2.5 + 4 . 10)/(6 + 4)
X = (15 + 40)/(10) = 5.5 cm

Jadi titik beratnya terletak 5.5 cm di kanan ujung m1

KESEIMBANGAN BENDA TEGAR

Telah dikatakan sebelumnya bahwa suatu benda tegar dapat mengalami gerak translasi (gerak lurus) dan gerak rotasi. Benda tegar akan melakukan gerak translasi apabila gaya yang diberikan pada benda tepat mengenai suatu titik yang yang disebut titik berat.

Benda akan seimbang jika pas diletakkan di titik beratnya

Benda akan seimbang jika pas diletakkan di titik beratnya

Titik berat merupakan titik dimana benda akan berada dalam keseimbangan rotasi (tidak mengalami rotasi). Pada saat benda tegar mengalami gerak translasi dan rotasi sekaligus, maka pada saat itu titik berat akan bertindak sebagai sumbu rotasi dan lintasan gerak dari titik berat ini menggambarkan lintasan gerak translasinya.

Mari kita tinjau suatu benda tegar, misalnya tongkat pemukul kasti, kemudian kita lempar sambil sedikit berputar. Kalau kita perhatikan secara aeksama, gerakan tongkat pemukul tadi dapat kita gambarkan seperti membentuk suatu lintasan dari gerak translasi yang sedang dijalani dimana pada kasus ini lintasannya berbentuk parabola. Tongkat ini memang berputar pada porosnya, yaitu tepat di titik beratnya. Dan, secara keseluruhan benda bergerak dalam lintasan parabola. Lintasan ini merupakan lintasan dari posisi titik berat benda tersebut.

Demikian halnya seorang peloncat indah yang sedang terjun ke kolam renang. Dia melakukan gerak berputar saat terjun. sebagaimana tongkat pada contoh di atas, peloncat indah itu juga menjalani gerak parabola yang bisa dilihat dari lintasan titik beratnya. Perhatikan gambar berikut ini.

seorang yang meloncat ke air dengan berputar

seorang yang meloncat ke air dengan berputar

Jadi, lintasan gerak translasi dari benda tegar dapat ditinjau sebagai lintasan dari letak titik berat benda tersebut. Dari peristiwa ini tampak bahwa peranan titik berat begitu penting dalam menggambarkan gerak benda tegar.

Cara untuk mengetahui letak titik berat suatu benda tegar akan menjadi mudah untuk benda-benda yang memiliki simetri tertentu, misalnya segitiga, kubus, balok, bujur sangkar, bola dan lain-lain. Yaitu d sama dengan letak sumbu simetrinya. Hal ini jelas terlihat pada contoh diatas bahwa letak titik berat sama dengan sumbu rotasi yang tidak lain adalah sumbu simetrinya.

Orang ini berada dalam keseimbangan

Orang ini berada dalam keseimbangan

Di sisi lain untuk benda-benda yang mempunyai bentuk sembarang letak titik berat dicari dengan perhitungan. Perhitungan didasarkan pada asumsi bahwa kita dapat mengambil beberapa titik dari benda yang ingin dihitung titik beratnya dikalikan dengan berat di masing-masing titik kemudian dijumlahkan dan dibagi dengan jumlah berat pada tiap-tiap titik. dikatakan titik berat juga merupakan pusat massa di dekat permukaan bumi, namun untuk tempat yang ketinggiannya tertentu di atas bumi titik berat dan pusat massa harus dibedakan.

DINAMIKA ROTASI DALAM BENDA TEGAR

Dinamika Rotasi
Seperti yang telah Anda pelajari tentang materi dinamika
partikel, di mana suatu benda sebagai obyek pembahasan dianggap
sebagai suatu titik materi mengalami gerak translasi (dapat bergerak
lurus atau melengkung) jika resultan gaya eksternal yang bekerja pada
benda tersebut tidak nol (􀀶F 􀁺 0
􀀦
). Untuk menyelesaikan masalah
dinamika partikel, Anda harus menguasai menggambar diagram gaya
untuk benda bebas dan kemudian menggunakan Hukum II Newton
(􀀶F 􀀠 ma
􀀦

Benda tegar dengan distribusi massa kontinu yang berputar
terhadap titik o
Apabila elemen massa 􀂨mi diambil sangat kecil (􀂨mi 􀄺 0), maka
bentuk jumlahan dalam persamaan (3.6) dapat diganti dengan bentuk
intergral, jadi momen inersianya adalah:
􀀠􀂦 􀀧
i
i i I r2 m (3.7)
dengan r adalah jarak elemen massa dm terhadap sumbu putar.
Contoh soal 3.2.
Sebuah batang langsing 1 meter dikenai tiga gaya seperti gambar, bila
poros terletak di salah satu ujung O, tentukan torsi total yang dilakukan
oleh ketiga gaya tersebut pada batang langsing terhadap poros O.
O B C 􀁔 = 30o
F2 sin 􀁔 F2= 10 N
F2 cos 􀁔
F1= 20 N
F3 = 25 N
).
Dalam Sub-bab ini Anda akan mempelajari materi dinamika
rotasi benda tegar. Benda tegar adalah suatu benda dimana partikelpartikel
penyusunnya berjarak tetap antara partikel satu dengan yang
lainnya. Benda tegar sebagai objek pembahasan, ukurannya tidak
diabaikan (tidak dianggap sebagai satu titik pusat materi), di mana
resultan gaya eksternal dapat menyebabkan benda bergerak translasi
dan juga rotasi (berputar terhadap suatu poros tertentu). Gerak rotasi


disebabkan oleh adanya torsi, 􀁗 yaitu tingkat kecenderungan sebuah
gaya untuk memutar suatu benda tegar terhadap suatu titik poros.
Untuk menyelesaikan masalah dinamika rotasi benda tegar,
Anda harus menguasai menggambar diagram gaya benda bebas,
kemudian menggunakan 􀀶F 􀀠 ma
􀀦
untuk benda yang bergerak
translasi dan menggunakan 􀀶􀁗 􀀠 I􀁄 untuk benda yang bergerak rotasi,
dengan I (kg.m2) besaran momen inersia dan 􀁄 percepatan sudut.
Dalam materi dinamika partikel, Anda telah mempelajari dan
menggunakan hukum kekekalan energi mekanik untuk menyelesaikan
masalah gerak translasi dan ternyata dapat terelesaikan dengan lebih
mudah dan cepat dibanding dengan menggunakan analisa dinamika
partikel 􀀶F 􀀠 ma
􀀦
. Hal demikian juga berlaku pada pemecahan
masalah gerak rotasi tertentu seperti gerak menggelinding (gabungan
translasi dan rotasi) benda tegar yang menuruni atau mendaki suatu
permukaan bidang miring, dimana penggunaan hukum kekekalan
energi mekanik lebih mudah dan cepat dibanding menggunakan analisa
dinamika rotasi yang menggunakan persamaan 􀀶F 􀀠 ma
􀀦
dan
􀀶􀁗 􀀠 I􀁄 .
Sebelum materi dinamika rotasi, Anda telah mempelajari
hukum kekekalan momentum linier. Dalam Sub-bab ini Anda akan
diperkenalkan dengan materi hukum kekekalan momentum sudut.
Contoh aplikasi hukum ini ditemui pada pada atlit penari es yang
melaukan peningkatan laju putarannya dengan cara menarik kedua
lengannya dari terentang ke merapat badannya.
3.2. Kecepatan dan Percepatan Angular
Dalam membahas materi tentang gerak rotasi Anda harus
terlebih dahulu mempelajari besaran fisis gerak rotasi yaitu pergeseran
sudut, kecepatan sudut dan percepatan sudut. Besaran pergeseran sudut,
kecepatan sudut dan percepatan sudut selalu dinyatakan dalam bentuk
vektor, masing-masing dilambangkan dengan 􀁔 ,􀁙 dan􀁄 . Arah
pergeseran sudut adalah positif bila gerak rotasi (melingkar atau
berputar) berlawanan dengan arah putaran jarum jam, sedangkan arah
vektornya (seperti ditunjukkan dalam Gambar 3.1) sejajar dengan
sumbu rotasi (sumbu putar) yaitu arah maju sekrup putar kanan.

hukum kekekalan momentum

hukum kekekalan menyatakan bahwa properti tertentu yang dapat diukur dari sistem fisika terisolasi tidak berubah selagi sistem berubah. Berikut ini adalah daftar sebagian dari hukum kekekalan yang tidak pernah menunjukan tidak tepat. (Sebenarnya, dalam relativitas umum, energi, momentum, dan momentum sudut tidak kekal karena ada lekukan umum wakturuang "manifold" yang tidak memiliki simetri pembunuhan untuk translasi atau rotasi).

HUKUM KEKEKALAN MOMENTUM

Hukum kekekalan momentum diterapkan pada proses tumbukan semua jenis, dimana prinsip impuls mendasari proses tumbukan dua benda, yaitu I1 = -I2.

Jika dua benda A dan B dengan massa masing-masing MA dan MB serta kecepatannya masing-masing VA dan VB saling bertumbukan, maka :

MA VA + MB VB = MA VA + MB VB

VA dan VB = kecepatan benda A dan B pada saat tumbukan

VA dan VB = kecepatan benda A den B setelah tumbukan.

Dalam penyelesaian soal, searah vektor ke kanan dianggap positif, sedangkan ke kiri dianggap negatif.

Dua benda yang bertumbukan akan memenuhi tiga keadaan/sifat ditinjau dari keelastisannya,

a. ELASTIS SEMPURNA : e = 1

e = (- VA' - VB')/(VA - VB)

e = koefisien restitusi.
Disini berlaku hukum kokokalan energi den kokekalan momentum.

b. ELASTIS SEBAGIAN: 0 < e < 1
Disini hanya berlaku hukum kekekalan momentum.

Khusus untuk benda yang jatuh ke tanah den memantul ke atas lagi maka koefisien restitusinya adalah:

e = h'/h

h = tinggi benda mula-mula
h' = tinggi pantulan benda

C. TIDAK ELASTIS: e = 0
Setelah tumbukan, benda melakukan gerak yang sama dengan satu kecepatan v',

MA VA + MB VB = (MA + MB) v'

Disini hanya berlaku hukum kekekalan momentum

Contoh:

1. Sebuah bola dengan massa 0.1 kg dijatuhkan dari ketinggian 1.8 meter dan mengenai lantai, kemudian dipantulkan kembali sampai ketinggian 1.2 meter. Jika g = 10 m/det2.
Tentukanlah:
a. impuls karena beret bola ketika jatuh.
b. koefisien restitusi

Jawab:

a. Selama bola jatuh ke tanah terjadi perubahan energi potensial menjadi energi kinetik.

Ep = Ek

m g h = 1/2 mv2 ® v2 = 2 gh

® v = Ö2 g h

impuls karena berat ketika jatuh:

I = F . Dt = m . Dv

= 0.1Ö2gh = 0.1 Ö(2.10.1.8) = 0.1.6 = 0,6 N det.

b. Koefisien restitusi:

e = Ö(h'/h) = Ö(1.2/1.8) = Ö(2/3)

2. Sebuah bola massa 0.2 kg dipukul pada waktu sedang bergerak dengan kecepatan 30 m/det. Setelah meninggalkan pemukul, bola bergerak dengan kecepatan 40 m/det berlawanan arah semula. Hitung impuls pada tumbukan tersebut !

Jawab:

Impuls = F . t = m (v2 - v1)

= 0.2 (-40 - 30)

= -14 N det

Tanda berarti negatif arah datangnya berlawanan dengan arah datangnya bola.

3. Sebuah peluru yang massanya M1 mengenai sebuah ayunan balistik yang massanya M2. Ternyata pusat massa ayunan naik setinggi h, sedangkan peluru tertinggal di dalam ayunan. Jika g = percepatan gravitasi, hitunglah kecepatan peluru pada saat ditembakkan !

Jawab:

Penyelesaian soal ini kita bagi dalam dua tahap, yaitu:

1. Gerak A - B.

Tumbukan peluru dengan ayunan adalah tidak elastis jadi kekekalan momentumnya:

M1VA + M2VB = (M1 + M2) V
M1VA + 0 = (M1 + M2) V

VA = [(M1 + M2)/M1] . v

2. Gerak B - C.
Setelah tumbukan, peluru dengan ayunan naik setinggi h, sehingga dapat diterapkan kekekalan energi:

EMB = EMC

EpB + EkB = EpC + EkC

0 + 1/2 (M1 + M2) v2 = (M1 + M2) gh + 0

Jadi kecepatan peluru: VA = [(M1 + M2)/M1] . Ö(2 gh)

d. ELASTISITAS KHUSUS DALAM ZAT PADAT

Zat adalah suatu materi yang sifat-sifatnya sama di seluruh bagian, dengan kata lain, massa terdistribusi secara merata. Jika suatu bahan (materi) berupa zat padat mendapat beban luar, seperti tarikan, lenturan, puntiran, tekanan, maka bahan tersebut akan mengalami perubahan bentuk tergantung pada jenis bahan dan besarnya pembebanan. Benda yang mampu kembali ke bentuk semula, setelah diberikan pembebanan disebut benda bersifat elastis.

Suatu benda mempunyai batas elastis. Bila batas elastis ini dilampaui maka benda akan mengalami perubahan bentuk tetap, disebut juga

USAHA DAN ENERGII

A. Usaha

Perhatikanlah gambar orang yang sedang menarik balok sejaruh d meter! Orang tersebut dikatakan telah melakukan kerja atau usaha. Namun perhatikan pula orang yang mendorong dinding tembok dengan sekuat tenaga. Orang yang mendorong dinding tembok dikatakan tidak melakukan usaha atau kerja. Meskipun orang tersebut mengeluarkan gaya tekan yang sangat besar, namun karena tidak terdapat perpindahan kedudukan dari tembok, maka orang tersebut dikatakan tidak melakukan kerja.

mendorong-dengan-gaya

Gambar:

Usaha akan bernilai bila ada perpindahan

Kata kerja memiliki berbagai arti dalam bahasa sehari-hari, namun dalam fisika kata kerja diberi arti yang spesifik untuk mendeskripsikan apa yang dihasilkan gaya ketika gaya itu bekerja pada suatu benda. Kata ’kerja’ dalam fisika disamakan dengan kata usaha. Kerja atau Usaha secara spesifik dapat juga didefinisikan sebagai hasil kali besar perpindahan dengan komponen gaya yang sejajar dengan perpindahan.

Jika suatu gaya F menyebabkan perpindahan sejauh s, maka gaya F melakukan usaha sebesar W, yaitu

gaya-serong


Persamaan usaha dapat dirumuskan sebagai berikut.

W = SF . s

W = usaha (joule)

F = gaya yang sejajar dengan perpindahan (N)

s = perpindahan (m)


diagram-gaya-serong

Jika suatu benda melakukan perpindahan sejajar bidang horisontal, namun gaya yang diberikan membentuk sudut a terhadap perpindahan, maka besar usaha yang dikerjakan pada benda adalah :

W = F . cos a . s

Kerja Mandiri

1. Sebuah benda meluncur di atas papan kasar sejauh 5 m, mendapat perlawanan gesekan dengan papan sebesar 180 newton. Berapa besarnya usaha dilakukan oleh benda tersebut.

2. Gaya besarnya 60 newton bekerja pada sebuah gaya. Arah gaya membentuk sudut 30o dengan bidang horizontal. Jika benda berpindah sejauh 50 m. Berapa besarnya usaha ?

grafik-gaya-jarak Lalu bagaimana menentukan besarnya usaha, jika gaya yang diberikan tidak teratur. Sebagai misal, saat 5 sekon pertama, gaya yang diberikan pada suatu benda membesar dari 2 N menjadi 8 N, sehingga benda berpindah kedudukan dari 3 m menjadi 12 m. Untuk menentukan kerja yang dilakukan oleh gaya yang tidak teratur, maka kita gambarkan gaya yang sejajar dengan perpindahan sebagai fungsi jarak s. Kita bagi jarak menjadi segmen-segmen kecil Ds. Untuk setiap segmen, rata-rata gaya ditunjukkan dari garis putus-putus. Kemudian usaha yang dilakukan merupakan luas persegi panjang dengan lebar Ds dan tinggi atau panjang F. Jika kita membagi lagi jarak menjadi lebih banyak segmen, Ds dapat lebih kecil dan perkiraan kita mengenai kerja yang dilakukan bisa lebih akurat. Pada limit Ds mendekati nol, luas total dari banyak persegi panjang kecil tersebut mendekati luas dibawah kurva.

Jadi usaha yang dilakukan oleh gaya yang tidak beraturan pada waktu memindahkan sebuah benda antara dua titik sama dengan luas daerah di bawah kurva.

Pada contoh di samping :

W = ½ . alas . tinggi

W = ½ . ( 12 – 3 ) . ( 8 – 2 )

W = 27 joule

Kerja Kelompok

Lakukan diskusi tentang besar usaha yang dilakukan suatu benda, jika lintasan tempuh yang dilakukan benda berbeda-beda! Buatlah argumen yang dapat menunjukkan alasan-alasan yang dikemukaan, baik dalam bentuk narasi maupun dalam bentuk diagram dan gambar!

B. Energi

Energi merupakan salah satu konsep yang penting dalam sains. Meski energi tidak dapat diberikan sebagai suatu definisi umum yang sederhana dalam beberapa kata saja, namun secara tradisional, energi dapat diartikan sebagai suatu kemampuan untuk melakukan usaha atau kerja. Untuk sementara suatu pengertian kuantitas energi yang setara dengan massa suatu benda kita abaikan terlebih dahulu, karena pada bab ini, hanya akan dibicarakan energi dalam cakupan mekanika klasik dalam sistem diskrit.

Cobalah kalian sebutkan beberapa jenis energi yang kamu kenal ! Apakah energi-energi yang kalian kenal bersifat kekal, artinya ia tetap ada namun dapat berubah wujud ? Jelaskanlah salah satu bentuk energi yang kalian kenali dalam melakukan suatu usaha atau gerak!

Beberapa energi yang akan dibahas dalam bab ini adalah sebagai berikut.

1. Energi Potensial

Energi potensial adalah energi yang berkaitan dengan kedudukan suatu benda terhadap suatu titik acuan. Dengan demikian, titik acuan akan menjadi tolok ukur penentuan ketinggian suatu benda.

Misalkan sebuah benda bermassa m digantung seperti di bawah ini.

energi-potensial

Energi potensial dinyatakan dalam persamaan:

Ep = m . g . h

Ep = energi potensial (joule)

m = massa (joule)

g = percepatan gravitasi (m/s2)

h = ketinggian terhadap titik acuan (m)

Persamaan energi seperti di atas lebih tepat dikatakan sebagai energi potensial gravitasi. Di samping energi potensial gravitasi, juga terdapat energi potensial pegas yang mempunyai persamaan:

energi-pegas

Ep = ½ . k. Dx2 atau Ep = ½ . F . Dx

Ep = energi potensial pegas (joule)

k = konstanta pegas (N/m)

Dx = pertambahan panjang (m)

F = gaya yang bekerja pada pegas (N)

mobil-mainan

Gambar:

Mobil mainan memanfaatkan energi pegas diubah menjadi energi kinetik

Di samping energi potensial pegas, juga dikenal energi potensial gravitasi Newton, yang berlaku untuk semua benda angkasa di jagad raya, yang dirumuskan:

Ep = G M.m / r2

Ep = energi potensial gravitasi Newton (joule) selalu bernilai negatif. Hal ini menunjukkan bahwa untuk memindahkan suatu benda dari suatu posisi tertentu ke posisi lain yang jaraknya lebih jauh dari pusat planet diperlukan sejumlah energi (joule)

M = massa planet (kg)

m = massa benda (kg)

r = jarak benda ke pusat planet (m)

G = tetapan gravitasi universal = 6,672 x 10-11 N.m2/kg2

2. Energi Kinetik

Energi kinetik adalah energi yang berkaitan dengan gerakan suatu benda. Jadi, setiap benda yang bergerak, dikatakan memiliki energi kinetik. Meski gerak suatu benda dapat dilihat sebagai suatu sikap relatif, namun penentuan kerangka acuan dari gerak harus tetap dilakukan untuk menentukan gerak itu sendiri.

Persamaan energi kinetik adalah :

Ek = ½ m v2

Ek = energi kinetik (joule)

m = massa benda (kg)

v = kecepatan gerak suatu benda (m/s)

pompa-bensin

Gambar:

Energi kimia dari bahan bakar diubah menjadi energi kinetik oleh mobil

3. Energi Mekanik

Energi mekanik adalah energi total yang dimiliki benda, sehingga energi mekanik dapat dinyatakan dalam sebuah persamaan:

Em = Ep + Ek

Energi mekanik sebagai energi total dari suatu benda bersifat kekal, tidak dapat dimusnahkan, namun dapat berubah wujud, sehingga berlakulah hukum kekekalan energi yang dirumuskan:

Ep1 + Ek1 = Ep2 + Ek2

Mengingat suatu kerja atau usaha dapat terjadi manakala adanya sejumlah energi, maka perlu diketahui, bahwa berbagai bentuk perubahan energi berikut akan menghasilkan sejumlah usaha, yaitu:

W = F . s

W = m g (h1 – h2)

W = Ep1 – Ep2

W = ½ m v22 – ½ m v12

W = ½ F Dx

W = ½ k Dx2

Keterangan :

W = usaha (joule)

F = gaya (N)

m = massa benda (kg)

g = percepatan gravitasi (umumnya 10 m/s2 untuk di bumi, sedang untuk di planet

lain dinyatakan dalam persamaan g = G M/r2)

h1 = ketinggian awal (m)

h2 = ketinggian akhir (m)

v1 = kecepatan awal (m)

v2 = kecepatan akhir (m)

k = konstanta pegas (N/m)

Dx = pertambahan panjang (m)

Ep1 = energi potensial awal (joule)

Ep2 = energi potensial akhir (joule)

Dengan mengkombinasi persamaan-persamaan di atas, maka dapat ditentukan berbagai nilai yang berkaitan dengan energi. Di samping itu perlu pula dicatat tentang percobaan James Prescott Joule, yang menyatakan kesetaraan kalor – mekanik. Dari percobaannya Joule menemukan hubungan antara satuan SI joule dan kalori, yaitu :

1 kalori = 4,185 joule atau

1 joule = 0,24 kalor

Tugas Mandiri

Carilah berbagai bentuk energi dan sumber-sumbernya beserta contoh-contohnya.

Presentasikan di depan kelas beberapa bentuk energi yang ada di alam semesta. Kemukakan pula cara memanfaatkan energi tersebut dan uraikan kelebihan serta kekurangan dari bentuk energi yang kamu presentasikan!

C. Kaitan Antara Energi dan Usaha

Teorema usaha-energi apabila dalam sistem hanya berlaku energi kinetik saja dapat ditentukan sebagai berikut.

W = F . s

W = m a.s

W = ½ m.2as

Karena v22 = v21 + 2as dan 2as = v22 – v21 maka

W = ½ m (v22 – v21)

W = ½ m v22 – ½ m v21

W = D Ep

Untuk berbagai kasus dengan beberapa gaya dapat ditentukan resultan gaya sebagai berikut.

· Pada bidang datar

diagram-1

- fk . s

=

½ m (Vt2 – Vo2)

diagram-2

F cos a – fk . s = ½ m (Vt2 – Vo2)

  • · Pada bidang miring

diagram-3


- w sin a – fk . s =
½ m (Vt2 – Vo2)

diagram-4


(F cos bw sin a – fk) . s = ½ m (Vt2 – Vo2)


Kerja Mandiri

1. Gaya besarnya 80 newton bekerja pada benda massanya 50 kg. Arah gaya membentuk sudut 60o dengan horizontal. Hitung kecepatan benda setelah berpindah sejauh 10 m.

D. Daya

Daya adalah kemampuan untuk mengubah suatu bentuk energi menjadi suatu bentuk energi lain. Sebagai contoh, jika terdapat sebuah lampu 100 watt yang efisiensinya 100 %, maka tiap detik lampu tersebut akan mengubah 100 joule energi listrik yang memasuki lampu menjadi 100 joule energi cahaya. Semakin besar daya suatu alat, maka semakin besar kemampuan alat itu mengubah suatu bentuk energi menjadi bentuk energi lain.

Kerja Kelompok

Percobaan

Tujuan:

Menunjukkan adanya perubahan suatu bentuk energi menjadi energi lain.

Metode pelaksanaan:

Tempelkan sebuah pegas pada balok yang cukup besar, kemudian di ujung pegas diberi bola kecil. Semua benda di lantai, maka saat bola kecil ditarik dan kemudian dilepaskan, selidikilah perubahan energi apa saja yang terjadi dalam percobaan tersebut.

Jika seluruh energi yang masuk diubah menjadi energi dalam bentuk lain, maka dikatakan efisiensi alat tersebut adalah 100 % dan besar daya dirumuskan:

P = W / t

P = daya (watt)

W = usaha (joule)

t = waktu (s)

Namun mengingat dalam kehidupan sehari-hari sukar ditemukan kondisi ideal, maka dikenallah konsep efisiensi. Konsep efisiensi yaitu suatu perbandingan antara energi atau daya yang dihasilkan dibandingkan dengan usaha atau daya masukan. Efisiensi dirumuskan sebagai berikut.

e = Wout / Win x 100 % atau e = Pout / Pin x 100 %

e = efisiensi (%)

Wout = usaha yang dihasilkan (joule)

Win = usaha yang dimasukkan atau diperlukan (joule)

Pout = daya yang dihasilkan (watt)

Pin = daya yang dimasukkan atau dibutuhkan (watt)

Kerja Mandiri

Selesaiakan permasalahan berikut ini!

Berilah gambaran singkat tentang ilustrasi berikut ini! Bergantung pada faktor apa sajakah usaha bangsa Mesir primitif dalam membengun piramid? Berapa daya yang dibutuhkan? Jelaskan pula efisiensinya!

membangun-piramida

Perhatikan contoh-contoh soal berikut!

Contoh:

1) Sebuah balok bermassa 1 kg di atas lantai licin. Jika gaya mendatar 2 N digunakan untuk menarik balok, maka tentukan usaha yang dilakukan agar balok berpindah sejauh 3 m!

Penyelesaian:

W = F . s

W = 2 . 3

W = 6 joule

2) Sebuah balok bermassa 5 kg di atas lantai licin ditarik gaya 4 N membentuk sudut 60° terhadap bidang horisontal. Jika balok berpindah sejauh 2 m, maka tentukan usaha yang dilakukan!

Penyelesaian:

W = F . s . cos a

W = 4 . 2 . cos 60°

W = 4 joule

3) Sebuah benda diberi gaya dari 3 N hingga 8 N dalam 5 sekon. Jika benda mengalami perpindahan dari kedudukan 2 m hingga 10 m, seperti pada grafik, maka tentukan usaha yang dilakukan!

Penyelesaian:uraian-31

Usaha = luas trapesium

Usaha = jumlah garis sejajar x ½ . tinggi

Usaha = ( 3 + 8 ) x ½ . ( 10 – 2 )

Usaha = 44 joule

4) Buah kelapa bermassa 2 kg berada pada ketinggian 8 m. Tentukan energi potensial yang dimilikibuah kelapa terhadap permukaan bumi!

Penyelesaian:

Ep = m . g . h

Ep = 2 . 10 . 8

Ep = 160 N

5) Sebuah sepeda dan penumpangnya bermassa 100 kg. Jika kecepatan sepeda dan penumpannya 72 km/jam, tentukan energio kinetik yang dilakukan pemiliki sepeda!

Penyelesaian:

Ek = ½ . m . v2 ( v = 72 km/jam = 72 x 1000 m / 3600s)

Ek = ½ . 100 . 202

Ek = 20.000 joule

6) Sebuah pegas dengan konstanta pegas 200 N/m diberi gaya sehingga meregang sejauh 10 cm. Tentukan energi potensial pegas yang dialami pegas tersebut!

Penyelesaian:

Ep = ½ . k . Dx2

Ep = ½ . 200 . 0,12

Ep = ½ joule

7) Suatu benda pada permukaan bumi menerima energi gravitasi Newton sebesar 10 joule. Tentukan energi potensial gravitasi Newton yang dialami benda pada ketinggian satu kali jari-jari bumi dari permukaan bumi!

Penyelesaian:

= 2,5 joule

8) Buah kelapa 4 kg jatuh dari pohon setinggi 12,5 m. Tentukan kecepatan kelapa saat menyentuh tanah!

Penyelesaian:

Kelapa jatuh memiliki arti jatuh bebas, sehingga kecepatan awalnya nol. Saat jatuh di tanah berarti ketinggian tanah adalah nol, jadi:

m.g.h1 + ½ . m v12 = m.g.h2 + ½ . m . v22

jika semua ruas dibagi dengan m maka diperoleh :

g.h1 + ½ .v12 = g.h2 + ½ . v22

10.12,5 + ½ .02 = 10 . 0 + ½ .v22

125 + 0 = 0 + ½ v22

v2 =

v2 = 15,8 m/s


9) Sebuah benda jatuh dari ketinggian 4 m, kemudian melewati bidang lengkung seperempat lingkaran licin dengan jari-jari 2 m. Tentukan kecepatan saat lepas dari bidang lengkung tersebut!

soal-9

Penyelesaian :

Bila bidang licin, maka sama saja dengan

gerak jatuh bebas buah kelapa, lintasan

dari gerak benda tidak perlu diperhatikan,

sehingga diperoleh :

m.g.h1 + ½ . m v12 = m.g.h2 + ½ . m . v22

g.h1 + ½ .v12 = g.h2 + ½ . v22

10.6 + ½ .02 = 10 . 0 + ½ .v22

60 + 0 = 0 + ½ v22

v2 =

v2 = 10,95 m/s

10) Sebuah mobil yang mula-mula diam, dipacu dalam 4 sekon, sehingga mempunyai kecepatan 108 km/jam. Jika massa mobil 500 kg, tentukan usaha yang dilakukan!

Penyelesaian:

Pada soal ini telah terdapat perubahan kecepatan pada mobil, yang berarti telah terjadi perubahan energi kinetiknya, sehingga usaha atau kerja yang dilakukan adalah :

W = ½ m v22 – ½ m v12

W = ½ . 500 . 303 – ½ . 500 . 02 ( catatan : 108 km/jam = 30 m/s)

W = 225.000 joule

11) Tentukan usaha untuk mengangkat balok 10 kg dari permukaan tanah ke atas meja setinggi 1,5 m!

Penyelesaian:

Dalam hal ini telah terjadi perubahan kedudukan benda terhadap suatu titik acuan, yang berarti telah terdapat perubahan energi potensial gravitasi, sehingga berlaku persamaan:

W = m g (h1 – h2)

W = 10 . 10 . (0 – 1,5)

W = – 150 joule

Tanda (– ) berarti diperlukan sejumlah energi untuk mengangkat balok tersebut.

12) Sebuah air terjun setinggi 100 m, menumpahkan air melalui sebuah pipa dengan luas penampang 0,5 m2. Jika laju aliran air yang melalui pipa adalah 2 m/s, maka tentukan energi yang dihasilkan air terjun tiap detik yang dapat digunakan untuk menggerakkan turbin di dasar air terjun!

Penyelesaian:

Telah terjadi perubahan kedudukan air terjun, dari ketinggian 100 m menuju ke tanah yang ketinggiannya 0 m, jadi energi yang dihasilkan adalah :

W = m g (h1 – h2)

Untuk menentukan massa air terjun tiap detik adalah:

Q = A . v (Q = debit air melalui pipa , A = luas penampang , v = laju aliran air)

Q = 0,5 . 2

Q = 1 m3/s

Q = (V = volume, t = waktu, dimana t = 1 detik)

1 =

V = 1 m3

r = (r = massa jenis air = 1000 kg/m3, m = massa air)

1000 =

m = 1000 kg

W = m g (h1 – h2)

W = 1000 . 10 . (100 – 0)

W = 1.000.000 joule

13) Sebuah peluru 20 gram ditembakkan dengan sudut elevasi 30° dan kecepatan awal 40 m/s. Jika gaya gesek dengan udara diabaikan, maka tentukan energi potensial peluru pada titik tertinggi!

Penyelesaian:

Tinggi maksimum peluru dicapai saat vy = 0 sehingga :

vy = vo sin a – g .t

0 = 40 . sin 30° – 10 . t

t = 2 s

Sehingga tinggi maksimum peluru adalah :

y = vo . sin a . t – ½ . g . t2

y = 40 . sin 30° . 2 – ½ . 10 . 22

y = 20 m (y dapat dilambangkan h, yang berarti ketinggian)

Jadi energi potensialnya :

Ep = m . g . h (20 gram = 0,02 kg)

Ep = 0,02 . 10 . 20

Ep = 4 joule

14) Sebuah benda bermassa 0,1 kg jatuh bebas dari ketinggian 2 m ke hamparan pasir. Jika benda masuk sedalam 2 cm ke dalam pasir kemudian berhenti, maka tentukan besar gaya rata-rata yang dilakukan pasir pada benda tersebut!

Penyelesaian:

Terjadi perubahan kedudukan, sehingga usaha yang dialami benda:

W = m g (h1 – h2)

W = 0,1 . 10 . (2 – 0)

W = 2 joule

W = - F . s

2 = - F . 0,02 ( 2 cm = 0,02 m)

F = - 100 N

tanda (-) berarti gaya yang diberikan berlawanan dengan arah gerak benda!

15) Sebuah mobil bermassa 1 ton dipacu dari kecepatan 36 km/jam menjadi berkecepatan 144 km/jam dalam 4 sekon. Jika efisiensi mobil 80 %, tentukan daya yang dihasilkan mobil!

Penyelesaian:

Terjadi perubahan kecepatan, maka usaha yang dilakukan adalah:

W = ½ m v22 – ½ m v12 (1 ton = 1000 kg, 144 km/jam = 40 m/s, 36 km/jam = 10 m/s)

W = ½ 1.000 .(40)2 – ½ 1.000 . (10 )2

W = 750.000 joule

P =

P =

P = 187.500 watt

h =

80 % =

Pout = 150.000 watt