Sabtu, 30 Januari 2010

KESEIMBANAGN NETRAL...

Sebuah benda dikatakan berada dalam keseimbangan netral jika setelah digerakkan, benda tersebut tetap diam di posisinya yang baru (benda tidak bergerak kembali ke posisi semula; benda juga tidak bergerak menjahui posisi semula).

Contoh 1 :

Amati gambar di bawah… Bola berada di atas permukaan horisontal (bidang datar). Jika bola didorong, bola akan bergerak. Setelah bergerak, bola tetap diam di posisinya yang baru. Dengan kata lain, bola sudah malas balik ke posisinya semula; bola juga malas bergerak lebih jauh lagi dari posisinya semula.

jenis-jenis-keseimbangan-h

Contoh 2 :

Ini gambar sebuah silinder (drum raksasa yang dicat biru ;) ). Silinder berada di atas permukaan bidang datar. Kasusnya sama seperti bola di atas. Jika didorong, silinder akan berguling ria. setelah tiba di posisinya yang baru, silinder tetap diam di situ. Si silinder dah malas jalan-jalan…. Pingin bobo, katanya :)

jenis-jenis-keseimbangan-i

Agar dirimu semakin paham, silahkan melakukan percobaan kecil2an… gunakan benda yang bentuknya mirip dengan benda2 di atas.

Berdasarkan penjelasan panjang lebar di atas, ada beberapa hal yang dapat gurumuda simpulkan.

Pertama, jika titik berat benda berada di bawah titik tumpuh, maka benda selalu berada dalam keseimbangan stabil (benda masih bisa bergerak kembali ke posisi semula setelah puas jalan-jalan). Contohnya adalah ketika sebuah benda digantung dengan tali. Untuk kasus seperti ini, titik berat benda selalu berada di bawah titik tumpuh (titik tumpuh berada di antara tali dan tiang penyanggah).

Kedua, jika titik berat benda berada di atas titik tumpuh, keseimbangan bersifat relatif. Benda bisa berada dalam keseimbangan stabil, benda juga bisa berada dalam keseimbangan labil/tidak stabil. Perhatikan gambar di bawah….. Apabila setelah didorong, posisi benda seperti yang ditunjukkan pada gambar 1, benda masih bisa kembali ke posisi semula (benda berada dalam keseimbangan stabil). Sebaliknya, apabila setelah didorong, posisi benda seperti yang ditunjukkan gambar 2, benda tidak bisa kembali ke posisi semula. Benda akan terus berguling ria ke kanan (benda berada dalam keseimbangan tidak stabil/labil)

jenis-jenis-keseimbangan-j

Ketiga, keseimbangan benda sangat bergantung pada bentuk/ukuran benda. Benda yang kurus dan langsing berada dalam keseimbangan tidak stabil jika posisi berdiri benda tersebut tampak seperti yang ditunjukkan gambar 1. Alas yang menopang benda tidak lebar. Ketika disentuh sedikit saja, benda langsung tumbang. Perhatikan posisi tiik berat dan titik tumpuh. Sebaliknya, benda yang gemuk lebih stabil (lihat gambar 2). Alas yang menopang benda lumayan lebar. Setelah bergerak, titik beratnya masih berada di sebelah kiri titik tumpuh, sehingga benda masih bisa kembali ke posisi semula.

jenis-jenis-keseimbangan-k

Keempat, keseimbangan benda tergantung pada jarak titik berat dari titik tumpuh. Jika posisi berdiri benda seperti pada gambar 1, benda berada dalam keseimbangan tidak stabil. Angin niup dikit aja, benda langsung berguling ria… bandingkan dengan contoh benda kurus sebelumnya.

jenis-jenis-keseimbangan-lSebaliknya, jika posisi benda tampak seperti pada gambar 2, benda berada dalam keseimbangan stabil. Kata si benda, daripada berdiri mending bobo saja… biar kalau ada tikus yang nabrak, diriku tidak ikut2an tumbang… Sekarang perhatikan jarak antara titik berat dan titik tumpuh. Ketika benda berdiri (gambar 1), jarak titik berat dan titik tumpuh lumayan besar. Ketika benda bobo (gambar 2), jarak antara titik berat dan titik tumpuh sangat kecil.

Kita bisa menyimpulkan bahwa keseimbangan benda sangat bergantung pada jarak titik berat dari titik tumpuh. Semakin jauh si titik berat dari si titik tumpuh (gambar 1), keseimbangan benda semakin tidak stabil. Sebaliknya, semakin dekat si titik berat dari si titik tumpuh (gambar 2), keseimbangan benda semakin stabil.

Jawaban pertanyaannya mana ? oh, pertanyaan di awal tulisan ini-kah ? Konsep2nya khan sudah gurumuda jelaskan secara panjang lebar…. Sekarang, dirimu bisa memikirkan jawabannya sendiri ya…. guampang kok…. Masukan jawaban melalui kolom komentar. Gurumuda akan memberikan berjuta2 pujian kepadamu, kalau jawabannya benar….

keseimbanagn labil

Keseimbangan Labil alias tidak stabil

Keseimbangan Labil alias tidak stabil

Sebuah benda dikatakan berada dalam keseimbangan labil alias tidak stabil apabila setelah bergerak, benda bergerak lebih jauh lagi dari posisinya semula. Biar lebih paham, perhatikan contoh di bawah….

Contoh 1 :

Sebuah balok mula-mula diam (gambar 1). Setelah ditabrak tikus ;) , balok tersebut bergerak alias mau tumbang ke tanah (gambar 2). Amati posisi titik berat dan titik tumpuh… Posisi titik berat berada di sebelah kanan titik tumpuh. Adanya torsi total yang dihasilkan oleh gaya berat (w) membuat balok bergerak semakin jauh dari posisinya semula (gambar 3). Titik tumpuh berperan sebagai sumbu rotasi…

jenis-jenis-keseimbangan-f

Contoh 2 :

Sebuah bola, mula-mula sedang diam di atas pantat wajan yang dibalik (gambar 1). Setelah ditiup angin, bola bergerak ke kanan (gambar 2). Amati gaya-gaya yang bekerja pada bola tersebut. Komponen gaya berat yang tegak lurus permukaan wajan (w cos teta) dan gaya normal (N) saling melenyapkan karena kedua gaya ini mempunyai besar yang sama tapi arahnya berlawanan. Btw, pada bola bekerja juga komponen gaya berat yang sejajar permukaan wajan (w sin teta). w sin teta merupakan gaya total yang menyebabkan bola terus berguling ria ke bawah menjahui posisinya semula.

jenis-jenis-keseimbangan-g

KESEIMBANAGN

Jenis-jenis keseimbangan


Jenis-jenis keseimbangan

Seperti yang sudah gurumuda jelaskan pada pokok bahasan syarat-syarat keseimbangan statis, sebuah benda berada dalam keadaan diam jika tidak ada gaya total dan torsi total yang bekerja pada benda tersebut. Dengan kata lain, jika gaya total dan torsi total = 0, maka benda berada dalam keseimbangan statis (statis = diam). Btw, tidak semua benda yang kita jumpai dalam kehidupan sehari-hari selalu berada dalam keadaan diam. Mungkin pada mulanya benda diam, tetapi jika diberi gangguan (misalnya ditiup angin) benda bisa saja bergerak. Persoalannya, apakah setelah jalan-jalan, benda itu kembali lagi ke posisinya semula atau benda sudah bosan di posisi semula sehingga malas balik. Hal ini sangat bergantung pada jenis keseimbangan benda tersebut. Masalah ini yang akan kita kupas tuntas pada kesempatan ini. Daripada kelamaan dan jadi basi, mending kita langsung menuju sasaran saja….

Jika sebuah benda yang sedang diam mengalami gangguan (maksudnya terdapat gaya total atau torsi total yang bekerja pada benda tersebut), tentu saja benda akan bergerak (berpindah tempat). Setelah bergerak, akan ada tiga kemungkinan, yakni : (1) benda akan kembali ke posisinya semula, (2) benda berpindah lebih jauh lagi dari posisinya semula, (3) benda tetap berada pada posisinya yang baru.

Apabila setelah bergerak benda kembali ke posisinya semula, benda tersebut dikatakan berada dalam keseimbangan stabil (kemungkinan 1). Apabila setelah bergerak benda bergerak lebih jauh lagi, maka benda dikatakan berada dalam keseimbangan labil alias tidak stabil (kemungkinan 2) Sebaliknya, jika setelah bergerak, benda tetap berada pada posisinya yang baru, benda dikatakan berada dalam keseimbangan netral (kemungkinan 3) Untuk lebih memahami persoalan ini, alangkah baiknya jika gurumuda jelaskan satu persatu…


Keseimbangan Stabil

Misalnya mula-mula benda diam, dalam hal ini tidak ada gaya total atau torsi total yang bekerja pada benda tersebut. Jika pada benda dikerjakan gaya atau torsi (terdapat gaya total atau torsi total pada benda itu), benda akan bergerak. Benda dikatakan berada dalam keseimbangan stabil, jika setelah bergerak, benda kembali lagi ke posisi semula. Dalam hal ini, yang menyebabkan benda bergerak kembali ke posisi semula adalah gaya total atau torsi total yang muncul setelah benda bergerak. Untuk memudahkan pemahamanmu, cermati contoh di bawah…..

Contoh 1 :

Amati gambar di bawah. Sebuah bola berwarna biru digantung dengan seutas tali. Mula-mula benda berada dalam keseimbangan statis/benda diam (gambar 1). Setelah didorong, benda bergerak ke kanan (gambar 2). Sekuat apapun kita mendorong atau menarik bola, bola akan kembali lagi ke posisi semula setelah puas bergerak.

Sebagaimana tampak pada gambar, titik berat bola berada di bawah titik tumpuh. Untuk kasus seperti ini, bola atau benda apapun yang digantung selalu berada dalam keseimbangan stabil.

jenis-jenis-keseimbangan-a

Amati gambar 2. Bola bergerak kembali ke posisi seimbang akibat adanya gaya total yang bekerja pada bola (w sin teta). Gaya tegangan tali (T) dan komponen gaya berat yang sejajar dengan tali (w cos teta) saling melenyapkan, karena kedua gaya ini memiliki besar yang sama tapi arahnya berlawanan.

Contoh 2 :

Sebuah bola berada dalam sebuah mangkuk ;) besar. Mula-mula bola berada dalam keadaan diam (gambar 1). Setelah digerakkan, bola berguling ria ke kanan (gambar 2).

jenis-jenis-keseimbangan-b

Perhatikan diagram gaya yang bekerja pada bola (gambar 2). Komponen gaya berat yang tegak lurus permukaan mangkuk (w cos teta) dan gaya normal (N) saling melenyapkan, karena besar kedua gaya ini sama dan arahnya berlawanan. Bola bergerak kembali ke posisinya semula akibat adanya komponen gaya berat yang sejajar dengan permukaan mangkuk (w sin teta). w sin teta merupakan gaya total yang berperan menggulingkan bola kembali ke posisi seimbang.

Contoh ini juga menunjukkan bahwa bola berada dalam keseimbangan stabil, karena setelah bergerak, bola kembali lagi ke posisinya semula.

Contoh 3 :

Mula-mula benda berada dalam keseimbangan statis / benda diam (gambar 1). Seperti yang tampak pada gambar 1, jumlah gaya total yang bekerja pada benda = 0. Pada benda hanya bekerja gaya berat (w) dan gaya normal (N), di mana besar gaya normal = besar gaya berat. Karena arahnya berlawanan, maka kedua gaya ini saling melenyapkan.

jenis-jenis-keseimbangan-cGambar 2 menunjukkan posisi benda setelah di dorong. Perhatikan posisi titik berat dan titik tumpuh. Jika posisi titik berat masih berada di sebelah kiri titik tumpuh, maka benda masih bisa kembali ke posisi semula. Benda bisa bergerak kembali ke posisi semula akibat adanya torsi total yang dihasilkan oleh gaya berat. Dalam hal ini, titik tumpuh berperan sebagai sumbu rotasi.

Bagaimana kalau benda terangkat ke kiri seperti yang ditunjukkan gambar 3 ? Kasusnya mirip seperti ketika benda terangkat ke kanan (gambar 2). Perhatikan posisi titik berat dan titik tumpuh. Benda masih bisa kembali ke posisi semula karena titik berat berada di sebelah kanan titik tumpuh. Torsi total yang dihasilkan oleh gaya berat menggerakkan benda kembali ke posisi semula (Titik tumpuh berperan sebagai sumbu rotasi)

Untuk kasus seperti ini, biasanya benda tetap berada dalam keseimbangan stabil kalau setelah bergerak, titik berat benda tidak melewati titik tumpuh. Minimal titik berat tepat berada di atas titik tumpuh. Untuk memahami hal ini, amati gambar di bawah…

jenis-jenis-keseimbangan-dMisalnya mula-mula benda diam. Benda akan kembali ke posisi semula jika setelah didorong, posisi benda condong ke kanan seperti ditunjukkan gambar 1 atau gambar 2. Dalam hal ini, titik berat benda masih berada di sebelah kiri titik tumpuh atau titik berat tepat berada di atas titik tumpuh. Untuk kasus seperti ini, benda masih berada dalam keseimbangan stabil.

Sebaliknya, apabila setelah didorong dan bergerak, titik berat benda berada di sebelah kanan titik tumpuh, maka benda tidak akan kembali ke posisi semula lagi, tetapi terus berguling ria ke kanan/benda terus bergerak menjahui posisi semula (gambar 3). Untuk kasus seperti ini, benda tidak berada dalam keseimbangan stabil lagi.

Perhatikan gambar di bawah. Persoalannya mirip dengan contoh sebelumnya, bedanya benda bergerak ke kiri. Benda berada dalam keseimbangan stabil (benda masih bisa bergerak kembali ke posisi seimbang), jika setelah bergerak, titik berat benda berada di sebelah kanan titik tumpuh (gambar 1) atau titik berat benda tepat berada di atas titik tumpuh (gambar 2). Sebaliknya, jika setelah didorong dan bergerak, titik berat berada di sebelah kiri titik tumpuh, maka benda tidak akan kembali ke posisi semula, tapi terus berguling ria ke kiri. Jika kasusnya seperti ini, benda tidak berada dalam keseimbangan stabil. Benda berada dalam keseimbangan labil/tidak stabil.

jenis-jenis-keseimbangan-e

Pada umum, jika titik berat benda berada di bawah titik tumpuh, maka benda selalu berada dalam keseimbangan stabil. Sebaliknya, apabila titik berat benda berada di atas titik tumpuh, keseimbangan benda menjadi relatif. Benda bisa berada dalam keseimbangan stabil, benda juga bisa berada dalam keseimbangan labil. Batas maksimum keseimbangan stabil (benda masih bisa bergerak kembali ke posisi semula) adalah ketika titik berat tepat berada di atas titik tumpuh. Hal ini disebabkan karena gaya normal yang mengimbangi gaya gravitasi masih berada dalam daerah kontak, sehingga torsi yang dikerjakan gaya berat bisa mendorong benda kembali ke posisi semula. Kalau titik berat sudah melewati titik tumpuh, maka torsi yang dikerjakan oleh gaya berat akan membuat benda bergerak lebih jauh lagi.

Selasa, 26 Januari 2010

jenis jenis keseimbangan benda tegar

Jenis-jenis keseimbangan

Jenis-jenis keseimbangan

Seperti yang sudah gurumuda jelaskan pada pokok bahasan syarat-syarat keseimbangan statis, sebuah benda berada dalam keadaan diam jika tidak ada gaya total dan torsi total yang bekerja pada benda tersebut. Dengan kata lain, jika gaya total dan torsi total = 0, maka benda berada dalam keseimbangan statis (statis = diam). Btw, tidak semua benda yang kita jumpai dalam kehidupan sehari-hari selalu berada dalam keadaan diam. Mungkin pada mulanya benda diam, tetapi jika diberi gangguan (misalnya ditiup angin) benda bisa saja bergerak. Persoalannya, apakah setelah jalan-jalan, benda itu kembali lagi ke posisinya semula atau benda sudah bosan di posisi semula sehingga malas balik. Hal ini sangat bergantung pada jenis keseimbangan benda tersebut. Masalah ini yang akan kita kupas tuntas pada kesempatan ini. Daripada kelamaan dan jadi basi, mending kita langsung menuju sasaran saja….

Jika sebuah benda yang sedang diam mengalami gangguan (maksudnya terdapat gaya total atau torsi total yang bekerja pada benda tersebut), tentu saja benda akan bergerak (berpindah tempat). Setelah bergerak, akan ada tiga kemungkinan, yakni : (1) benda akan kembali ke posisinya semula, (2) benda berpindah lebih jauh lagi dari posisinya semula, (3) benda tetap berada pada posisinya yang baru.

Apabila setelah bergerak benda kembali ke posisinya semula, benda tersebut dikatakan berada dalam keseimbangan stabil (kemungkinan 1). Apabila setelah bergerak benda bergerak lebih jauh lagi, maka benda dikatakan berada dalam keseimbangan labil alias tidak stabil (kemungkinan 2) Sebaliknya, jika setelah bergerak, benda tetap berada pada posisinya yang baru, benda dikatakan berada dalam keseimbangan netral (kemungkinan 3) Untuk lebih memahami persoalan ini, alangkah baiknya jika gurumuda jelaskan satu persatu…


Keseimbangan Stabil

Misalnya mula-mula benda diam, dalam hal ini tidak ada gaya total atau torsi total yang bekerja pada benda tersebut. Jika pada benda dikerjakan gaya atau torsi (terdapat gaya total atau torsi total pada benda itu), benda akan bergerak. Benda dikatakan berada dalam keseimbangan stabil, jika setelah bergerak, benda kembali lagi ke posisi semula. Dalam hal ini, yang menyebabkan benda bergerak kembali ke posisi semula adalah gaya total atau torsi total yang muncul setelah benda bergerak. Untuk memudahkan pemahamanmu, cermati contoh di bawah…..

Contoh 1 :

Amati gambar di bawah. Sebuah bola berwarna biru digantung dengan seutas tali. Mula-mula benda berada dalam keseimbangan statis/benda diam (gambar 1). Setelah didorong, benda bergerak ke kanan (gambar 2). Sekuat apapun kita mendorong atau menarik bola, bola akan kembali lagi ke posisi semula setelah puas bergerak.

Sebagaimana tampak pada gambar, titik berat bola berada di bawah titik tumpuh. Untuk kasus seperti ini, bola atau benda apapun yang digantung selalu berada dalam keseimbangan stabil.

jenis-jenis-keseimbangan-a

Amati gambar 2. Bola bergerak kembali ke posisi seimbang akibat adanya gaya total yang bekerja pada bola (w sin teta). Gaya tegangan tali (T) dan komponen gaya berat yang sejajar dengan tali (w cos teta) saling melenyapkan, karena kedua gaya ini memiliki besar yang sama tapi arahnya berlawanan.

keseimbangan benda tegar

Titik berat merupakan titik dimana benda akan berada dalam keseimbangan rotasi (tidak mengalami rotasi). Pada saat benda tegar mengalami gerak translasi dan rotasi sekaligus, maka pada saat itu titik berat akan bertindak sebagai sumbu rotasi dan lintasan gerak dari titik berat ini menggambarkan lintasan gerak translasinya.

Mari kita tinjau suatu benda tegar, misalnya tongkat pemukul kasti, kemudian kita lempar sambil sedikit berputar. Kalau kita perhatikan secara aeksama, gerakan tongkat pemukul tadi dapat kita gambarkan seperti membentuk suatu lintasan dari gerak translasi yang sedang dijalani dimana pada kasus ini lintasannya berbentuk parabola. Tongkat ini memang berputar pada porosnya, yaitu tepat di titik beratnya. Dan, secara keseluruhan benda bergerak dalam lintasan parabola. Lintasan ini merupakan lintasan dari posisi titik berat benda tersebut.

Demikian halnya seorang peloncat indah yang sedang terjun ke kolam renang. Dia melakukan gerak berputar saat terjun. sebagaimana tongkat pada contoh di atas, peloncat indah itu juga menjalani gerak parabola yang bisa dilihat dari lintasan titik beratnya. Perhatikan gambar berikut ini.

seorang yang meloncat ke air dengan berputar

seorang yang meloncat ke air dengan berputar
Jadi, lintasan gerak translasi dari benda tegar dapat ditinjau sebagai lintasan dari letak titik berat benda tersebut. Dari peristiwa ini tampak bahwa peranan titik berat begitu penting dalam menggambarkan gerak benda tegar.

Cara untuk mengetahui letak titik berat suatu benda tegar akan menjadi mudah untuk benda-benda yang memiliki simetri tertentu, misalnya segitiga, kubus, balok, bujur sangkar, bola dan lain-lain. Yaitu d sama dengan letak sumbu simetrinya. Hal ini jelas terlihat pada contoh diatas bahwa letak titik berat sama dengan sumbu rotasi yang tidak lain adalah sumbu simetrinya.

Jumat, 22 Januari 2010

hubungan momen gaya dengan percepatan sudut

Torsi alias momen gaya
Pengantar

Dalam pokok bahasan hukum II newton, kita belajar bahwa sebuah benda bisa bergerak lurus dengan percepatan tertentu jika diberikan gaya. Misalnya terdapat sebuah buku yang terletak di atas meja. Mula-mula buku itu diam (kecepatan = 0). Setelah diberikan gaya dorong, buku itu bergerak dengan kecepatan tertentu. Buku mengalami perubahan kecepatan (dari diam menjadi bergerak) akibat adanya gaya. Perubahan kecepatan = percepatan. Kita bisa mengatakan bahwa buku mengalami percepatan akibat adanya gaya. Semakin besar gaya yang diberikan, semakin besar percepatan gerak buku itu. Jadi dalam gerak lurus, gaya sebanding dengan percepatan linear benda.

Bagaimana-kah dengan gerak rotasi ?

Hubungan antara Gaya, Lengan Gaya (Lengan Torsi) dan Percepatan Sudut

Untuk memahami persoalan ini, pahami ilustrasi berikut ini. Kita tinjau sebuah benda yang berotasi. Misalnya pintu rumah. Btw, ketika kita membuka dan menutup pintu, pintu juga melakukan gerak rotasi. Engsel yang menghubungkan pintu dengan tembok berperan sebagai sumbu rotasi.

torsi-1

Ini gambar pintu (dilihat dari atas). Misalnya kita mendorong pintu dengan gaya yang sama (F1 = F2). Mula-mula kita mendorong pintu dengan gaya F1 yang berjarak r1 dari sumbu rotasi. Setelah itu kita mendorong pintu dengan gaya F2 yang berjarak r2 dari sumbu rotasi. Walaupun besar dan arah Gaya F1 = F2, Gaya F2 akan membuat pintu berputar lebih cepat dibandingkan dengan Gaya F1. Dengan kata lain, gaya F2 menghasilkan percepatan sudut yang lebih besar dibandingkan dengan gaya F1. Masa sich ? serius… dirimu bisa membuktikan dengan mendorong pintu di rumah.

Jadi dalam gerak rotasi, percepatan sudut tidak hanya bergantung pada Gaya saja, tetapi bergantung juga pada jarak tegak lurus antara sumbu rotasi dengan garis kerja gaya. Jarak tegak lurus dari sumbu rotasi ke garis kerja gaya, dinamakan lengan gaya alias lengan torsi. Pada contoh di atas, Lengan gaya untuk F1 adalah r1, sedangkan lengan gaya untuk F2 adalah r2.

Catatan :

Mengenai lengan gaya, selengkapnya dipelajari pada penjelasan di bawah. Untuk ilustrasi di atas, lengan gaya = r, karena garis kerja gaya (arah gaya) tegak lurus sumbu rotasi.

Kita bisa menyimpulkan bahwa percepatan sudut yang dialami benda yang berotasi berbanding lurus dengan hasil kali Gaya dengan lengan gaya. Hasil kali antara gaya dan lengan gaya ini dikenal dengan julukan Torsi alias momen gaya. Jadi percepatan sudut benda sebanding alias berbanding lurus dengan torsi. Semakin besar torsi, semakin besar percepatan sudut. Semakin kecil torsi, semakin kecil percepatan sudut (percepatan sudut =perubahan kecepatan sudut)

Secara matematis, hubungan antara Torsi dengan percepatan sudut dinyatakan sebagai berikut :

torsi-2

Hubungan antara Arah Gaya dengan Lengan Gaya

Pada penjelasan di atas, arah gaya F1 dan F2 tegak lurus pintu. Kali ini kita mencoba melihat beberapa kondisi yang berbeda. Perhatikan gambar di bawah.

torsi-3

Gambar pintu (dilihat dari atas). Pada gambar a, garis kerja gaya tegak lurus terhadap r (garis kerja gaya membentuk sudut 90o). Pada gambar b, garis kerja gaya membentuk sudut teta terhadap r. Pada Gambar c, garis kerja gaya berhimpit dengan r (garis kerja gaya menembus sumbu rotasi). Walaupun besar gaya sama, tapi karena arah gaya berbeda, maka besar lengan gaya juga berbeda. Lengan gaya l1 lebih besar dari lengan gaya l2. Sedangkan lengan gaya l3 = 0 karena garis kerja gaya F3 berhimpit dengan sumbu rotasi.

Untuk menentukan lengan gaya, kita bisa menggambarkan garis dari sumbu rotasi menuju garis kerja gaya, di mana garis dari sumbu rotasi harus tegak lurus alias membentuk sudut siku-siku dengan garis kerja gaya.

Persamaan Lengan Gaya

Untuk membantu menurunkan persamaan lengan gaya, gurumuda menggunakan bantuan gambar

torsi-41

Amati gambar di atas. Garis kerja gaya membentuk sudut teta terhadap r.

torsi-5

Apabila garis kerja gaya tegak lurus r (gambar a), maka besar lengan gaya adalah :

torsi-6

Apabila garis kerja gaya berhimpit dengan r (gambar c), maka besar lengan gaya adalah :

torsi-7

BESAR TORSI

Torsi adalah hasil kali antara gaya dan lengan gaya. Secara matematis, torsi dirumuskan sebagai berikut :

torsi-8Jika arah gaya tegak lurus r, maka sudut yang dibentuk adalah 90o. Dengan demikian, besar Torsi untuk kasus ini adalah :

torsi-9

Jika arah gaya berhimpit dengan r, maka sudut yang dibentuk adalah 0o. Dengan demikian, besar Torsi untuk kasus ini adalah :

torsi-10

Para fisikawan sering menggunakan istilah torsi sedangkan para insnyur sering menggunakan istilah Momen Gaya.

Satuan Sistem Internasional untuk Torsi adalah Newton meter. Satuan Torsi tetap Newton meter, bukan joule, karena torsi bukan energi.

ARAH TORSI

Torsi merupakan besaran vector, sehingga selain mempunyai besar, torsi juga mempunyai arah. Apabila arah rotasi berlawanan dengan putaran jarum jam, maka Torsi bernilai positif. Sebaliknya, apabila arah rotasi searah dengan putaran jarum jam, maka arah torsi bernilai negative. Untuk menentukan arah torsi, kita menggunakan kaidah alias aturan tangan kanan. Untuk mempermudah pemahamanmu, perhatikan gambar di bawah.

Pintu didorong ke depan

Catatan :

Arah gaya F pada gambar di bawah tidak tegak lurus ke atas alias tidak menuju ke langit. Arah gaya menembus pintu. Jadi pintunya dilihat dari atas. Bayangkanlah dirimu mendorong pintu ke depan, di mana arah doronganmu tegak lurus pintu itu.

torsi-11Gambar pintu (dilihat dari atas). Misalnya kita mendorong pintu dengan gaya F, di mana arah gaya tegak lurus r. Bagaimana-kah arah Torsi untuk kasus ini ? gampang… Gunakan aturan tangan kanan. Rentangkan jari tangan kanan dan usahakan supaya posisi keempat jari tangan kanan sejajar dengan arah gaya F. setelah itu, putar keempat jari tangan kanan menuju sumbu rotasi (ke kiri). Arah yang ditunjukkan oleh Ibu Jari adalah arah Torsi. Untuk contoh di atas, putaran keempat jari tangan kanan berlawanan dengan putaran jarum jam. Arah torsi tegak lurus ke atas (menuju langit)

Pintu didorong ke belakang

Catatan :

Arah gaya F pada gambar di bawah tidak tegak lurus ke bawah alias tidak menuju ke tanah. Arah gaya menembus pintu. Bayangkanlah dirimu mendorong pintu dari depan, di mana arah doronganmu tegak lurus pintu itu.

torsi-12

Gunakan aturan tangan kanan lagi untuk menentukan arah torsi. Rentangkan jari tangan kanan dan usahakan supaya posisi keempat jari tangan kanan sejajar dengan arah gaya F. setelah itu, putar keempat jari tangan kanan menuju sumbu rotasi. Arah yang ditunjukkan oleh Ibu Jari adalah arah Torsi. Untuk kasus ini, putaran keempat jari tangan kanan searah dengan putaran jarum jam. Arah torsi tegak lurus ke bawah (menuju ke dalam tanah). Arah Torsi bernilai negative karena putaran searah dengan arah putaran jarum jam.

Contoh Soal 1 :

Seorang kakek mendorong pintu, di mana arah dorongan tegak lurus pintu (lihat gambar di bawah). Tentukan Torsi yang dikerjakan sang kakek terhadap pintu…

torsi-a1

Panduan Jawaban :

Guampang sekali….

torsi-b1torsi-c1

Untuk contoh di atas, lengan gaya (l) = jarak gaya dari sumbu rotasi (r), karena garis kerja gaya tegak lurus pintu.


Arah torsi ?

Perhatikan arah rotasi alias arah putaran pintu pada gambar di atas. Arah torsi tegak lurus ke langit… mudahnya seperti ini. Putar keempat jari tangan kananmu searah dengan arah rotasi. Arah yang ditunjukkan oleh ibu jari adalah arah torsi. Arah rotasi berlawanan dengan jarum jam, sehingga torsi bernilai positif.

Level 1 selesai… next mision

Contoh Soal 2 :

Seorang bayi yang sangat superaktif sedang merangkak di dekat pintu, lalu mendorong tepi pintu dengan gaya sebesar 2 N. Jika lebar pintu 1 meter dan arah dorongan si bayi yang nakal itu membentuk sudut 60o terhadap pintu, tentukan torsi yang dikerjakan bayi (amati gambar di bawah).

torsi-d

Panduan Jawaban :

Soal gini ma guampang ;)

torsi-e

Sekarang kita hitung Torsi yang dikerjakan si bayi yang supernakal tadi :

torsi-f

Ya, kecil sekali…

Arah torsi kemana-kah ?

Perhatikan arah rotasi alias arah putaran pintu pada gambar di atas. Arah rotasi berlawanan dengan jarum jam, sehingga torsi bernilai postif. Arah torsi tegak lurus ke langit… mudahnya seperti ini. Putar keempat jari tangan kananmu searah dengan arah rotasi. Arah yang ditunjukkan oleh ibu jari adalah arah torsi.

NB :

Seandainya si bayi memberikan gaya dorong yang arahnya tegak lurus pintu, berapa Torsi-nya ? yang ini hitung sendiri ya…..

Level 2 selesai… next mision

Contoh Soal 3 :

Seorang tukang memasang sebuah mur menggunakan sebuah kunci, seperti tampak pada gambar. Jika besar gaya yang diberikan 40 N dan garis kerja gaya membentuk sudut 45o terhadap r, tentukan besar lengan gaya dan torsi yang dikerjakan pada mur tersebut (r = 0,2 meter)

torsi-g

Panduan Jawaban :

Terlebih dahulu kita hitung lengan gaya alias lengan torsi :

torsi-hWah, lengan gaya Cuma 0,14 meter.

Sekarang kita hitung besar Torsi :

torsi-i

Arah torsi bagaimana-kah ?

Perhatikan gambar di atas. Arah rotasi searah dengan putaran jarum jam (kunci di tekan ke bawah). Dengan demikian, arah torsi menuju ke dalam (arah gerakan mur ke dalam). Untuk kasus ini, sepertinya om tukang memasang mur. Untuk memudahkan pemahamanmu, gunakan aturan tangan kanan. Posisikan tangan kananmu hingga sejajar dengan kunci (ujung jari tanganmu berada di tepi kunci/sekitar F) . Setelah itu, putar keempat jari tanganmu menuju sumbu rotasi (diputar ke bawah/searah putaran jarum jam). Nah, arah ibu jari menunjukan arah torsi.

Level 3 selesai…..

Punya soal tentang torsi ?

Masukan saja melalui kolom komentar di bawah, nanti gurumuda tambahkan di sini

Referensi

Giancoli, Douglas C., 2001, Fisika Jilid I (terjemahan), Jakarta : Penerbit Erlangga

Halliday dan Resnick, 1991, Fisika Jilid I, Terjemahan, Jakarta : Penerbit Erlangga

Tipler, P.A.,1998, Fisika untuk Sains dan Teknik-Jilid I (terjemahan), Jakarta : Penebit Erlangga

Young, Hugh D. & Freedman, Roger A., 2002, Fisika Universitas (terjemahan), Jakarta : Penerbit Erlangga

hubungan translasi dengan rotasi

HUBUNGAN GERAK TRANSLASI DENGAN GERAK ROTASI
Gerakan Rotasi

Gerak Rotasi

Hubungannya
Pergeseran Linier
S
Pergeseran Sudut
q

S = q . R
Kecepatan Linier
v = ds/dt
Kecepatan Sudut
w = dq/dt

v = w . R
Percepatan Linier
a = dv/dt
Percepatan Sudut
a = dw/dt

a = a . R
Gaya
F = m.a
Momen Gaya (Torsi)
t = I a

t = F . R
Energi Kinetik
Ek = ½ m v2
Energi Kinetik
Ek = ½ I w2

-
Daya
P = F.v
Daya
P = t w

-
Momentum Linier
P = m.v
Momentum Sudut
L = P R

L = P R
Usaha
W = F.s
Usaha
W = t q

-

keterangan yg perlu diperhatikan

W= usaha

w= kecepatan sudut

w2= maksudnya dikuadratkan

Selasa, 19 Januari 2010

ARAH TORSI

Torsi merupakan besaran vector, sehingga selain mempunyai besar, torsi juga mempunyai arah. Apabila arah rotasi berlawanan dengan putaran jarum jam, maka Torsi bernilai positif. Sebaliknya, apabila arah rotasi searah dengan putaran jarum jam, maka arah torsi bernilai negative. Untuk menentukan arah torsi, kita menggunakan kaidah alias aturan tangan kanan. Untuk mempermudah pemahamanmu, perhatikan gambar di bawah.

Pintu didorong ke depan

Catatan :

Arah gaya F pada gambar di bawah tidak tegak lurus ke atas alias tidak menuju ke langit. Arah gaya menembus pintu. Jadi pintunya dilihat dari atas. Bayangkanlah dirimu mendorong pintu ke depan, di mana arah doronganmu tegak lurus pintu itu.

torsi-11Gambar pintu (dilihat dari atas). Misalnya kita mendorong pintu dengan gaya F, di mana arah gaya tegak lurus r. Bagaimana-kah arah Torsi untuk kasus ini ? gampang… Gunakan aturan tangan kanan. Rentangkan jari tangan kanan dan usahakan supaya posisi keempat jari tangan kanan sejajar dengan arah gaya F. setelah itu, putar keempat jari tangan kanan menuju sumbu rotasi (ke kiri). Arah yang ditunjukkan oleh Ibu Jari adalah arah Torsi. Untuk contoh di atas, putaran keempat jari tangan kanan berlawanan dengan putaran jarum jam. Arah torsi tegak lurus ke atas (menuju langit)

Pintu didorong ke belakang

Catatan :

Arah gaya F pada gambar di bawah tidak tegak lurus ke bawah alias tidak menuju ke tanah. Arah gaya menembus pintu. Bayangkanlah dirimu mendorong pintu dari depan, di mana arah doronganmu tegak lurus pintu itu.

torsi-12

Gunakan aturan tangan kanan lagi untuk menentukan arah torsi. Rentangkan jari tangan kanan dan usahakan supaya posisi keempat jari tangan kanan sejajar dengan arah gaya F. setelah itu, putar keempat jari tangan kanan menuju sumbu rotasi. Arah yang ditunjukkan oleh Ibu Jari adalah arah Torsi. Untuk kasus ini, putaran keempat jari tangan kanan searah dengan putaran jarum jam. Arah torsi tegak lurus ke bawah (menuju ke dalam tanah). Arah Torsi bernilai negative karena putaran searah dengan arah putaran jarum jam.

Contoh Soal 1 :

Seorang kakek mendorong pintu, di mana arah dorongan tegak lurus pintu (lihat gambar di bawah). Tentukan Torsi yang dikerjakan sang kakek terhadap pintu…

torsi-a1

Panduan Jawaban :

Guampang sekali….

torsi-b1torsi-c1

Untuk contoh di atas, lengan gaya (l) = jarak gaya dari sumbu rotasi (r), karena garis kerja gaya tegak lurus pintu.


Arah torsi ?

Perhatikan arah rotasi alias arah putaran pintu pada gambar di atas. Arah torsi tegak lurus ke langit… mudahnya seperti ini. Putar keempat jari tangan kananmu searah dengan arah rotasi. Arah yang ditunjukkan oleh ibu jari adalah arah torsi. Arah rotasi berlawanan dengan jarum jam, sehingga torsi bernilai positif.

Level 1 selesai… next mision

Contoh Soal 2 :

Seorang bayi yang sangat superaktif sedang merangkak di dekat pintu, lalu mendorong tepio terhadap pintu, tentukan torsi yang dikerjakan bayi (amati gambar di bawah). pintu dengan gaya sebesar 2 N. Jika lebar pintu 1 meter dan arah dorongan si bayi yang nakal itu membentuk sudut 60

torsi-d

Panduan Jawaban :

Soal gini ma guampang ;)

torsi-e

Sekarang kita hitung Torsi yang dikerjakan si bayi yang supernakal tadi :

torsi-f
Hubungan antara Arah Gaya dengan Lengan Gaya

Pada penjelasan di atas, arah gaya F1 dan F2 tegak lurus pintu. Kali ini kita mencoba melihat beberapa kondisi yang berbeda. Perhatikan gambar di bawah.

torsi-3

Gambar pintu (dilihat dari atas). Pada gambar a, garis kerja gaya tegak lurus terhadap r (garis kerja gaya membentuk sudut 90o). Pada gambar b, garis kerja gaya membentuk sudut teta terhadap r. Pada Gambar c, garis kerja gaya berhimpit dengan r (garis kerja gaya menembus sumbu rotasi). Walaupun besar gaya sama, tapi karena arah gaya berbeda, maka besar lengan gaya juga berbeda. Lengan gaya l1 lebih besar dari lengan gaya l2. Sedangkan lengan gaya l3 = 0 karena garis kerja gaya F3 berhimpit dengan sumbu rotasi.

Untuk menentukan lengan gaya, kita bisa menggambarkan garis dari sumbu rotasi menuju garis kerja gaya, di mana garis dari sumbu rotasi harus tegak lurus alias membentuk sudut siku-siku dengan garis kerja gaya.

Persamaan Lengan Gaya

Untuk membantu menurunkan persamaan lengan gaya, gurumuda menggunakan bantuan gambar

torsi-41

Amati gambar di atas. Garis kerja gaya membentuk sudut teta terhadap r.

torsi-5

Apabila garis kerja gaya tegak lurus r (gambar a), maka besar lengan gaya adalah :

torsi-6

Apabila garis kerja gaya berhimpit dengan r (gambar c), maka besar lengan gaya adalah :

torsi-7

BESAR TORSI

Torsi adalah hasil kali antara gaya dan lengan gaya. Secara matematis, torsi dirumuskan sebagai berikut :

torsi-8Jika arah gaya tegak lurus r, maka sudut yang dibentuk adalah 90o. Dengan demikian, besar Torsi untuk kasus ini adalah :

torsi-9

Jika arah gaya berhimpit dengan r, maka sudut yang dibentuk adalah 0o. Dengan demikian, besar Torsi untuk kasus ini adalah :

torsi-10

Para fisikawan sering menggunakan istilah torsi sedangkan para insnyur sering menggunakan istilah Momen Gaya.

Satuan Sistem Internasional untuk Torsi adalah Newton meter. Satuan Torsi tetap Newton meter, bukan joule, karena torsi bukan energi.

hubungan antar gaya

Hubungan antara Gaya, Lengan Gaya (Lengan Torsi) dan Percepatan Sudut

Untuk memahami persoalan ini, pahami ilustrasi berikut ini. Kita tinjau sebuah benda yang berotasi. Misalnya pintu rumah. Btw, ketika kita membuka dan menutup pintu, pintu juga melakukan gerak rotasi. Engsel yang menghubungkan pintu dengan tembok berperan sebagai sumbu rotasi.

torsi-1

Ini gambar pintu (dilihat dari atas). Misalnya kita mendorong pintu dengan gaya yang sama (F12). Mula-mula kita mendorong pintu dengan gaya F1 yang berjarak r1 dari sumbu rotasi. Setelah itu kita mendorong pintu dengan gaya F2 yang berjarak r2 dari sumbu rotasi. Walaupun besar dan arah Gaya F1 = F2, Gaya F2 akan membuat pintu berputar lebih cepat dibandingkan dengan Gaya F1. Dengan kata lain, gaya F2 menghasilkan percepatan sudut yang lebih besar dibandingkan dengan gaya F1. Masa sich ? serius… dirimu bisa membuktikan dengan mendorong pintu di rumah. = F

Jadi dalam gerak rotasi, percepatan sudut tidak hanya bergantung pada Gaya saja, tetapi bergantung juga pada jarak tegak lurus antara sumbu rotasi dengan garis kerja gaya. Jarak tegak lurus dari sumbu rotasi ke garis kerja gaya, dinamakan lengan gaya alias lengan torsi. Pada contoh di atas, Lengan gaya untuk F1 adalah r1, sedangkan lengan gaya untuk F2 adalah r2.

Catatan :

Mengenai lengan gaya, selengkapnya dipelajari pada penjelasan di bawah. Untuk ilustrasi di atas, lengan gaya = r, karena garis kerja gaya (arah gaya) tegak lurus sumbu rotasi.

Kita bisa menyimpulkan bahwa percepatan sudut yang dialami benda yang berotasi berbanding lurus dengan hasil kali Gaya dengan lengan gaya. Hasil kali antara gaya dan lengan gaya ini dikenal dengan julukan Torsi alias momen gaya. Jadi percepatan sudut benda sebanding alias berbanding lurus dengan torsi. Semakin besar torsi, semakin besar percepatan sudut. Semakin kecil torsi, semakin kecil percepatan sudut (percepatan sudut =perubahan kecepatan sudut)

Secara matematis, hubungan antara Torsi dengan percepatan sudut dinyatakan sebagai berikut :

torsi-2